skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chakravorty, Susmita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    ABSTRACT The extreme ultraviolet region (EUV) provides most of the ionization that creates the high equivalent width (EW) broad and narrow emission lines (BELs and NELs) of quasars. Spectra of hypermassive Schwarzschild black holes (HMBHs; MBH ≥ 1010 M⊙) with α-discs, decline rapidly in the EUV suggesting much lower EWs. Model spectra for BHs of mass 106–1012 M⊙ and accretion rates 0.03 ≤ Lbol/LEdd ≤ 1.0 were input to the cloudy photoionization code. BELs become ∼100 times weaker in EW from MBH ∼ 108 M⊙ to MBH ∼ 1010 M⊙. The high-ionization BELs (O vi 1034 Å, C iv 1549 Å, and He ii 1640 Å) decline in EW from MBH ≥ 106 M⊙, reproducing the Baldwin effect, but regain EW for MBH ≥ 1010 M⊙. The low-ionization lines (Mg ii 2798 Å, H β 4861 Å, and H α 6563 Å) remain weak. Lines for maximally spinning HMBHs behave similarly. Line ratio diagrams for the BELs show that high O vi/H β and low C iv/H α may pick out HMBH, although O vi is often hard to observe. In NEL BPT diagrams, HMBHs lie among star-forming regions, except for highly spinning, high accretion rate HMBHs. In summary, the BELs expected from HMBHs would be hard to detect using the current optical facilities. From 100 to 1012 M⊙, the emission lines used to detect active galactic nuclei (AGNs) only have high EW in the 106–109 M⊙ window, where most AGNs are found. This selection effect may be distorting reported distributions of MBH. 
    more » « less